H13 TOOL STEEL | 1.2344 | SKD61

Aobo Steel - důvěryhodný globální dodavatel nástrojové oceli

Nástrojová ocel H13 je ocel pro práci za tepla, která se kali na vzduchu, a je jednou z nejpoužívanějších ocelí mezi všemi ocelemi pro práci za tepla. Podobná jako Nástrojová ocel D2 as a benchmark for cold work tool steels, H13 is the benchmark for hot work tool steels. Compared to Nástrojová ocel H11, this steel grade has higher thermal strength and hardness. It can be air-hardened, so it performs well in terms of kalení deformation and residual stress, and has a lower likelihood of surface oxidation. Additionally, it can achieve secondary hardening, has excellent thermal stability, and can effectively resist corrosion from aluminum alloy molten metal.

Výrobci tuto jakost oceli široce používají k výrobě forem a trnů pro protlačování za tepla, kovacích forem s bucharem a kovacích nástrojů. Běžně se také používá pro vložky v přesných kovacích strojích a nástrojích pro tlakové lití hliníku, mědi a jejich slitin.

The designation in the U.S. ASTM A681 system is H13, and the name in the American AISI system is AISI H13 steel. Similarly, other national standards use comparable designations, such as ISO 40CrMoV5, Japan/JIS SKD61, USA/UNS T20813, Germany/DIN X40CrMoV5-1, Germany/W-Nr. 1.2344, and Czech Republic (CSN) 19554, BS (BH13), SS (2242), ANFOR (Z40CDV5), UNI (X35CrMoV05KU / X40CrMoV511KU), and China GB/T 1299(4Cr5MoSiV1)

1. Aplikace

  • Nástroje pro práci za teplaJe to primární volba pro většinu operací tváření za tepla, zejména když nástroje vyžadují chlazení vodou nebo jiným proplachovacím médiem.
  • Formy pro tlakové lití: H13 material is particularly suitable for die casting zinc, aluminum, and magnesium alloys, such as push rods, ejector pins, core pins, slides, nozzles, and sprues. H13 material blocks purified by electroslag remelting (ESR) are suitable for plastic molds that require a high surface finish, such as automotive lens molds, due to their higher purity and uniformity.
  • Zápustky a razníky pro kování za tepla
  • Vytlačovací lis za teplaHorké protlačování lehkých kovů, jako je hliník a hořčík, a také pro trny, razníky a matrice.
  • Plastové vstřikovací formyToto je nejběžnější aplikace, zejména pro obrábění dutin.
  • Stříhací čepeleAplikace pro střihání za tepla.
  • Nástroje pro svařování třením s mícháním (FSW)1: FSW tools, particularly for welding aluminum plates, are often coated with TiN for enhanced performance.
  • Konstrukční prvkyOcel H13 má vysokou pevnost a dokáže si udržet tvrdost i při vysokých teplotách, proto se používá v konstrukčních prvcích, které jsou vystaveny vysokému namáhání, jako jsou podvozky letadel, záchytné háky a raketové pláště v leteckém průmyslu.

 2. Složení oceli H132

CCrMoPROTISiMnPS
0.32 – 0.45%4,75 – 5,50%1.10 – 1.75%0.80 – 1.20%0,80 – 1,25%0,20 – 0,60%≤ 0,030%≤ 0,030%

H13 tool steel equivalent grades’ composition

StupeňNormaC (%)Si (%)Mn (%)P (%)S (%)Cr (%)Po (%)V (%)
1.2344DIN0.37-0.420.90-1.200.30-0.50≤0,030≤0,0304.80-5.501.20-1.500.90-1.10
SKD61JIS0.35-0.420.80-1.200.25-0.50≤0,030≤0,0304.80-5.501.00-1.500.80-1.15
4Cr5MoSiV1GB0.32-0.420.80-1.200.20-0.50≤0,030≤0,0304.75-5.501.10-1.750.80-1.20

3. Vlastnosti nástrojové oceli H13

H13 mold steel is a hot-work tool steel widely used globally. It is characterized by high strength, high toughness, high hardenability, and resistance to thermal cracking. In particular, it can maintain its strength and hardness at high temperatures. Additionally, it has excellent comprehensive mechanical properties and high tempering stability.

3.1 Mechanické vlastnosti

Specifické vlastnosti silně závisí na teplotě popouštění. Zde jsou typické podélné mechanické vlastnosti při air-cooled from 1025 °C (1875 °F) and tempered:

Klíčové mechanické vlastnosti (typické hodnoty při pokojové teplotě, dvojnásobné popouštění 2h + 2h)

VlastnictvíTeplota 527 °C (980 °F)Teplota 555 °C (1030 °F)Teplota 575 °C (1065 °F)
Tvrdost52 HRC50 HRC48 HRC
Pevnost v tahu (Rm)1960 MPa (284 ksi)1835 MPa (266 ksi)1730 MPa (251 ksi)
Mez kluzu (Rp0,2)1570 MPa (228 ksi)1530 MPa (222 ksi)1470 MPa (213 ksi)
Prodloužení (ve 4D)13.0%13.1%13.5%
Snížení plochy46.2%50.1%52.4%
Charpyho rázový řez s V-vrubem16 J (12 ft·lbf)24 J (18 ft·lbf)27 J (20 ft·lbf)

3.2 Fyzikální vlastnosti

VlastnictvíHodnota
Hustota7,75 – 7,80 g/cm3
Pevnost v tahu, konečná1200 – 2050 MPa (174000 – 231000 psi)
Pevnost v tahu, výtěžnost1000 – 1380 MPa (145000 – 200000 psi)
Tvrdost45-52 HRC (Tvrdost Rockwell C)
Rázová houževnatost20-40 J/cm2
Pevnost v tlaku2550 MPa

3.3 Další důležité vlastnosti:

  • Odolnost proti opotřebení: Vynikající odolnost proti opotřebení. Pro další zlepšení odolnosti proti opotřebení lze materiál nitridovat, což může zvýšit jeho povrchovou tvrdost na více než 1000 HV (>70 HRC).
  • Houževnatost a rázová pevnost: Vynikající rázová houževnatost a dobrá tažnost.
  • Odolnost proti tepelné kontrole: Vynikající odolnost proti tepelnému praskání, přičemž tato vlastnost je ovlivněna jeho rázovou houževnatostí a tvrdostí bez vrubů.
  • Odolnost proti únavě: Dobrá odolnost proti únavě a v tomto ohledu má tato ocel výhodu oproti Legovaná ocel 4340.
  • Rozměrová stabilita: Když se tato ocel kalí na vzduchu, její objem se obvykle zvětší přibližně o 0,001 palce/palec (0,001 mm/mm).
  • Obrobitelnost: Pokud je stupeň obrobitelnosti uhlíkové oceli s obsahem uhlíku 1% nastaven na 100, pak má H13 při správném žíhání stupeň obrobitelnosti 70.
H13 OCELOVÁ PLOCHÁ TYČ
Nástrojová ocel H13

Máte zájem o nástrojovou ocel H13? Vyplňte níže uvedený formulář a kontaktujte nás. Odpovíme vám do 12 hodin!

4. Tepelné zpracování

The Tepelné zpracování oceli H13 involves several critical steps to achieve the desired properties:

4.1 Kování a chlazení po kování

Snadno se kuje a obvykle se kuje při teplotách mezi 1120 a 1150 °C (2050 až 2100 °F)Před kováním doporučujeme předehřát ocel na 790 až 815 °C (1450 až 1500 °F)a následným rovnoměrným zahřátím na požadovanou kovací teplotu.

Během kování nesmí teplota materiálu klesnout pod 925 °C (1700 °F)Pokud teplota klesne pod tuto hodnotu, musí se znovu zahřát na požadovanou kovací teplotu.

Tento materiál je ocel kalitelná na vzduchu, která musí být pomalu ochlazována, aby se zabránilo praskání v důsledku napětí. Po kování musí být materiál umístěn do pece při teplotě 790 °C (1450 °F) a udržovala se, dokud se teplota nestejnoměrně neustálí; poté se pomalu ochladila.

4.2 Žíhání (sféroidizační žíhání)

Po předchozím kroku by měl materiál H13 podstoupit sféroidizační žíhání, jehož cílem je eliminovat pnutí, zvýšit houževnatost a tažnost a vytvořit požadovanou mikrostrukturu.

Konkrétní detaily procesu žíhání jsou následující: ocel se zahřeje na 871 °C (1600 °F), vydrží 1 hodinu na palec (25,4 mm) tloušťky, poté se ochladí rychlostí 14 °C (25 °F) za hodinu na 482 °C (900 °F) a následně se ochladí vzduchem na pokojovou teplotu.

4.3 Normalizace (obecně se nedoporučuje)

Because of the risk of cracking, we generally do not recommend normalizing treatment for H13, especially when a controlled atmosphere furnace does not prevent surface decarburization. However, this normalizing treatment can still improve the uniformity of the material. This step must be performed immediately after spheroidizing annealing.
Konkrétní kroky jsou následující: předehřátí na přibližně 790 °C (1450 °F), pomalé a rovnoměrné zahřátí na 1040 až 1065 °C (1900 až 1950 °F), výdrž 1 hodiny na každých 25 mm (1 palec) tloušťky a poté ochlazení na vzduchu.

4.4 Hardening (Austenitizing and Quenching)

Teplota kalení je kolem 1030 °C (1885 °F)Jiné zdroje uvádějí rozmezí 1010–1040 °C (1850–1900 °F), konkrétně 1025 °C (1875 °F).

H13 is an air-hardening steel, and we recommend performing a preheating treatment. The purpose is to stabilize the crystalline structure, reduce hardness, increase ductility, improve machinability, promote uniform grain structure, and minimize distortion/cracking. The preheating temperature is 815 °C (1500 °F)Krychli o rozměrech 25 mm (1”) je třeba předehřát na 650 °C (1200 °F) a udržovat ji v této teplotě 10 až 15 minut před nastavením pece na krok namáčení. U choulostivých dílů může být nutný dodatečný předehřev.

Po předehřátí zvyšte teplotu pece na austenitizační teplotu 1010 °C (1850 °F). The soaking process then begins, with the soaking time calculated from the moment the material’s temperature is the same as the furnace temperature. Specific details are as follows: For parts thicker than 1“ (25mm), the soak time is typically half an hour per inch of the smallest cross-section. For smaller parts, specific soak times are provided: 1/8” (3.175mm) for 10-15 minutes, 1/4” (6.350mm) for 15 minutes, 1/2“ (12.70mm) for 20 minutes, 3/4” (19.05mm) for 25-30 minutes, and 1” (25mm) for 30 minutes.

Air quenching can minimize residual stress and reduce thermal shock. While air quenching is the most common method for H13, oil quenching is also used in practice, but it increases internal stresses. The hardness after quenching is 52-54 HRC. During the quenching cycle of the material, the next step of tempering should be performed immediately at a temperature no lower than 66°C/150°F to prevent cracking.

4.5 Temperování

The purpose is to reduce brittleness, transform martensite into a more stable microstructure, improve toughness, relieve stresses while retaining hardness.

We recommend tempering H13 twice or even three times to achieve optimal toughness and extend tool life. The first tempering temperature is 565 °C (1050 °F), druhá teplota popouštění je 550 °C (1025 °F), s každým cyklem vydrží 2 hodiny na palec (25 mm) tloušťky.

After tempering, the hardness varies with the tempering temperature. For example, as-quenched H13 has a hardness of 52-54 HRC. Tempering at 204°C (400°F) results in 51-53 HRC, while tempering at 538°C (1000°F) yields 47-48 HRC, and at 621°C (1150°F), it can be 36-38 HRC. Typical tempering temperatures range from 540-620°C (1000-1150°F), producing a stable microstructure that makes the material most suitable for high-temperature applications.

It is essential to vyhněte se popouštění H13 při teplotě okolo 500 °C (930 °F), as this temperature yields the lowest toughness.

Table of Hardness and Tempering Temperature for H13 Steel

Teplota temperováníRockwell C
As quenched49
1000°F/540°C51
1050°F/565°C50
1100°F/595°C47
1125°F/605°C41
1150°F/620°C36
Experimental Conditions: 1. PREHEAT TEMPERATURE 1500°F/815°C 2. HARDENING TEMPERATURE 1875°F/1025°C 3. AIR QUENCH 4. CHEMISTRY Carbon 0.40% Carbon 0.40% Silicon 1.00% Chromium 5.20% Molybdenum 1.30% Vanadium 0.95% Sulfur .005%Max.
H13 Tempering Size Change Chart
H13 Tempering Size Change Chart H13 Tempering Size Change Chart 0.0002 0.0001 0 -0.0001 -0.0002 -0.0003 -0.0004 -0.0005 -0.0006 -0.0007 Size Changes in Inches 0.0051 0.0025 0 -0.0025 -0.0051 -0.0076 -0.0102 -0.0127 -0.0152 -0.0178 Size Changes in Millimeters F° 300 C° 150 600 315 700 370 800 425 900 480 1000 540 1100 595 1200 650 1300 700 1400 760 Teplota temperování These changes are approximate values based on good heat treating practice.

5. Welding

H13 steel is readily weldable, especially for repair applications in molds, tools, and dies. Gas Tungsten Arc Welding (GTAW or TIG) is the most suitable welding process for H13 molds, tools, and dies, and can also be performed using an inert gas process or coated electrodes. When welding, the minimum recommended arc voltage and current must be used, and the electrode must be moved slowly in a straight line to minimize heat input. Clean slag frequently and peen the welds while they are still hot (above 370°C or 700°F); never peen a cold weld.

  1. Preheating. Preheating is essential before welding H13 steel, as cold welding can easily cause cracking. The preheating temperature should be between 110°C (230°F) and 375°C (707°F).
  2. Filler Wire. H13 filler wire is the preferred choice. If H13 filler wire is not available on site, a general-purpose medium-hardness tool steel filler wire designed specifically for thermal and cold working tools can be used.
  3. Shielding Gas. Argon is the standard welding gas for TIG welding H13, and it protects the weld seam from contamination. Hydrogen can be used as a backing shielding gas for the underside of the weld when an explosion risk is not present.
  4. Post-Welding Treatment for H13 Tool Steel. After welding, H13 welded parts (especially thick-walled welded parts) should be cooled slowly, either in a furnace at the preheating temperature or using an insulating medium (such as furnace slag, lime, mica, or diatomaceous earth). After slow cooling, the weld should undergo complete spheroidizing annealing.

6. H13 Steel Advantages and Disadvantages

6.1 Advantages

  • Excellent Toughness and Impact Strength
  • Vysoká odolnost proti opotřebení. H13’s relatively high vanadium content makes it very resistant to abrasion. This is because vanadium promotes the formation of very hard, stable carbides (like V8C7, MC type), which significantly increase wear resistance. Nitriding treatment can further improve the wear resistance of H13.
  • Excellent Hot Hardness, Temper Resistance, and Thermal Stability
  • High Hardenability and Dimensional Stability
  • Good Resistance to Heat Checking (Thermal Fatigue)
  • Weldability and Machinability. H13 is readily weldable, and after appropriate annealing treatment, it has good machinability

6.2 Disadvantages

  • High-cost. H13 tool steel is generally limited by its high cost. The high content of alloying elements contributes to this cost. Of course, this is only a relative disadvantage. Our customers in China have a very high demand for H13 steel, exceeding 2,000 tons per month, mainly for aluminum profiles.
  • Fabrication and Processing Difficulties. The heat treatment process for H13 during production may be relatively complex, which is mainly a challenge for manufacturers. Additionally, its machinability is more difficult compared to low-alloy materials. As mentioned earlier in the article, the good machinability of H13 is one of its advantages, so both advantages and disadvantages are relative.
  • Toughness and Brittleness Issues. It is quite sensitive to quench embrittlement, where precipitation of carbides along prior-austenite grain boundaries can significantly reduce toughness by creating paths for crack propagation, especially for large-section materials.
  • Susceptibility to Cracking and Distortion. Improper quenching processes, insufficient tempering time, or low tempering temperatures can all increase the risk of cracking and deformation.
  • Limited High-Temperature Performance. Although H13 is a hot-work steel, its strength decreases at temperatures above 650°C.

7. Compare with other steels

7.1 Compared to D2 tool steel

H13 steel is used in high-temperature conditions, where it exhibits excellent resistance to softening, thermal fatigue, and impact. Compared to cold-worked steel, however, it has lower wear resistance. D2 steel, on the other hand, performs exceptionally well in cold-working applications, offering high wear resistance and excellent dimensional stability. Compared to H13, however, D2 has lower toughness and poorer performance in high-temperature conditions.

Here is a side-by-side comparison highlighting their key differences and similarities:

Feature/PropertyH13 Tool Steel (AISI H-Series)D2 Tool Steel (AISI D-Series)
Primární aplikaceHot Work: Ideal for applications involving high temperatures and thermal fatigue, such as die casting molds, hot forging, and hot extrusion. Also used in plastic injection molds.Cold Work: Best suited for applications requiring high wear resistance at room temperature, like long-run dies, blanking, piercing, and trimming tools.
KlasifikaceHot-work die steel, 5% Chromium group.High-carbon, high-chromium cold-work tool steel.
Odolnost proti opotřebeníVery GoodVynikající
HouževnatostHigh impact strength, good resistance to brittle fractureLower impact strength and toughness compared to H13
Hot Hardness / Tempering ResistanceExcellent, performs well up to 700°C (1300°F)Limited, not designed for high-temperature use; typically restricted below 205-260°C (400-500°F) due to softening
KalitelnostDeep hardening, air-hardening, minimal distortion. Can be hardened in large sections.Deep hardening, air-hardening, minimal movement, and distortion during hardening. Can be fully hardened in large sections.
Rozměrová stabilitaVery low distortion; expands approximately 0.001 in./in. when air quenched.Minimum distortion; expands/contracts approximately 0.0005 in./in. when air quenched.
ObrobitelnostDobrý Chudý
Heat CheckingVery good resistance, especially in cast form.Not a primary characteristic, as it’s typically used in cold applications.
SvařitelnostReadily weldableDifficult to weld (nonweldable)

7.2 Compared to M2 tool steel

Nástrojová ocel M2 is primarily used for high-speed cutting, boasting excellent wear resistance and thermal hardness.

FunkceH13 SteelOcel M2
KlasifikaceHot-work die steel (5% Cr steel).Molybdenum-type high-speed steel (HSS), general purpose.
Primární použitíApplications involving high temperatures and loads, such as die casting, hot forging, hot extrusion dies, and plastic molds.Metal cutting and machining operations.
Odolnost proti opotřebeníHigh,Very High
HouževnatostGood, excellent impact strength,Good,
Hot Hardness / Temper ResistanceExcellent resistance to tempering, maintains high hardness and strength at elevated temperatures due to secondary hardening. Can operate up to 700°C.Very high, superior to H13, especially at higher temperatures; develops secondary hardness. Cobalt additions further enhance hot hardness.
KalitelnostDeep hardenability; can be hardened through in large sections by air cooling.Deep hardenability. Most forgiving hardening range among HSS.
ZkresleníMinimal due to air hardening.Medium.
ObrobitelnostFairly good in annealed conditionMedium.
SvařitelnostReadily weldableDifficult to weld (nonweldable)

8. Supply forms and dimensions

The H13 tool steel we supply is available in three shapes: flat bar, block, and round bar. The dimensions of the flat bar range from: width 20–600 mm × thickness 20–400 mm × length 1,000–5,500 mm. The dimensions of the round bar range from a diameter of 20–400 mm × a length of 1,000–5,500 mm. The block dimensions are obtained by cutting the flat bar.

For smaller sizes, such as round bars with a diameter less than 70 mm, we use the hot-rolled process. For sizes greater than 70 mm, we offer forged products.

We also offer the ESR (Electroslag Remelting) process, which is tailored to meet customer requirements. The advantage is better internal microstructure, but it comes at a higher cost. Please contact us for specific requirements.

UT testing: Sep 1921-84 D/d, E/e. 

Surface Treatment: original black, peeled, machined/turned, polished, grounded, or milled surface finishes.

Inventory Status: We do not maintain a stock of H13 tool steel. We arrange production based on customer orders.

Delivery time: Electric Arc Furnace (EAF) materials are 30-45 days. ESR materials are approximately 60 days. 

Many of our customers choose non-ESR processes when considering cost-effectiveness. Please discuss your specific requirements with us directly.

  1. Totten, G. E., & MacKenzie, D. S. (Eds.). (2003). Příručka hliníku: Svazek 2: Výroba slitin a materiálů (p. 581). ↩︎
  2. Bringas, J. E. (Ed.). (2002). Příručka srovnávacích světových ocelářských norem (2nd ed., p. 434). ASTM International. ↩︎

FAQ

Can H13 steel be welded?

Yes, H13 tool steel can be welded, but it has limited weldability and requires specific procedures due to its air-hardening nature and susceptibility to cracking during and after welding. Preheating before welding, maintaining suitable interpass temperatures, and performing post-weld heat treatment (PWHT) are essential to minimize cracking and preserve its properties. Gas Tungsten Arc Welding (GTAW) is often recommended for its control.

Is H13 high-speed steel?

No, H13 steel is not classified as a high-speed steel. It is identified as a hot-work tool steel.

Jaká je konečná pevnost H13?

Mez pevnosti v tahu (známá také jako pevnost v tahu) oceli H13 se liší v závislosti na teplotě popouštění a výrobním procesu. Typické podélné mechanické vlastnosti oceli H13 při pokojové teplotě, založené na tyčích popouštěných na různé stupně tvrdosti, jsou následující:
When tempered at 527 °C (980 °F), the tensile strength is 1960 MPa (284 ksi).
When tempered at 555 °C (1030 °F), the tensile strength is 1835 MPa (266 ksi).
When tempered at 575 °C (1065 °F), the tensile strength is 1730 MPa (251 ksi).
When tempered at 593 °C (1100 °F), the tensile strength is 1580 MPa (229 ksi).
When tempered at 605 °C (1120 °F), the tensile strength is 1495 MPa (217 ksi).

Is H13 hard to machine?

Ano, ocel H13 může být obtížně obrobitelná, zejména po kalení. Její obrobitelnost však může být ovlivněna jejím stavem a specifickou obráběcí operací.

What is the Rockwell hardness of H13 steel?

The recommended hardness range for H13 tool steel is generally 40-55 HRC. Specific applications and tempering temperatures can result in values ranging from 36 HRC (at a tempering temperature of 621°C) to 56 HRC (at a tempering temperature of 500°C). Forging tools in service typically range from 38-52 HRC.

What is the difference between H11 and H13 steel?

The primary difference between H11 and H13 steel lies in their vanadium content and the resulting impact on their properties. H13 may show slightly lower toughness than H11, especially during quench embrittlement.

What are the main characteristics of H13 tool steel?

Key characteristics include exceptional heat resistance, high toughness, high hot strength, high hot wear resistance, high retention of hardness, and strong resistance to thermal fatigue (heat checking)

Does H13 tool steel have good wear resistance?

Yes, H13 tool steel has excellent wear resistance. This property can be further improved by nitriding, which can increase surface hardness to over 1000 HV, equivalent to more than 70 HRC.

 Is H13 tool steel resistant to thermal fatigue (heat checking)?

H13 tool steel has excellent resistance to thermal fatigue cracking.

What are the mechanical properties of H13 tool steel?

Typical mechanical properties at room temperature (when double tempered) include an Ultimate Tensile Strength ranging from 1200 to 2050 MPa (174,000-231,000 psi) and Yield Strength from 1000 to 1570 MPa (145,000-228,000 psi). Specific values are highly dependent on the tempering temperature. It also possesses good impact strength and ductility, with a Charpy V-notch impact strength of 16-27 J depending on tempering.

Does H13 tool steel rust or have corrosion resistance?

No, H13 tool steel is not highly corrosion-resistant compared to stainless steel or other specialized alloys. It is primarily chosen for its strength and heat resistance rather than its corrosion properties, and is prone to rust in aggressive environments, including those with moisture, humidity, or chemically aggressive plastics.

What factors can cause H13 tool steel dies to fail prematurely?

Common failure mechanisms include wear, mechanical fatigue, gross cracking, plastic deformation, and thermal fatigue cracking (heat checking). These can be exacerbated by factors such as too low billet temperature, inadequate die design (e.g., sharp radii, thin walls), improper heat or surface treatment, insufficient die support, or high cavity stress levels.

How is H13 tool steel heat-treated for optimal hardness and toughness?

The hardening process typically involves preheating to around 815°C (1500°F), then raising the temperature to an austenitizing range of 1010-1040°C (1850-1900°F), followed by air quenching. Tempering is crucial and usually performed twice or three times, at temperatures typically between 540-620°C (1000-1150°F), with each cycle lasting approximately 2 hours per inch of thickness. Avoiding tempering around 500°C (930°F) is critical as it yields the lowest toughness.

What maintenance practices are recommended to optimize H13 tool hardness and lifespan?

We recommend performing regular inspections for signs of wear or fatigue, applying recoating or retempering when necessary, and avoiding overheating during operation, which can soften the material. Proper die preheating also significantly reduces the risk of catastrophic failure via cracking.

How does surface treatment benefit H13 tool steel?

Surface treatments are commonly applied to H13 tool steel to enhance wear resistance. Nitriding, for example, is a thermochemical treatment that creates a hard surface layer and can induce compressive residual stress, which helps counteract heat checking. However, the nitrided layer can be brittle, so careful control of thickness (e.g., typically no more than 0.3 mm) is necessary.

What are the international equivalent standards for H13 tool steel?

H13 tool steel has various international equivalents, including AISI H13 (USA), X40CrMoV5-1 (Europe/Germany DIN 1.2344), and SKD61 (Japan JIS), and 4Cr5MoSiV1(China GB)

Získejte vynikající výkon s naší nástrojovou ocelí H13

V Aobo Steel využíváme více než 20 let zkušeností v oblasti kování dodávat prémiovou nástrojovou ocel H13. Naše ocel H13 je proslulá svou výjimečnou tvrdostí za tepla, houževnatostí a odolností proti tepelné únavě a je ideální volbou pro vaše nejnáročnější aplikace, včetně tlakového lití, vytlačovacích forem a kovacích nástrojů.

Spolupracujte s důvěryhodným dodavatelem, za nímž více než 40 stabilních materiálových zdrojůZískejte konzistentní kvalitu a spolehlivost, na kterých závisí váš provoz.

Jste připraveni vylepšit svou produkci pomocí vysoce kvalitního H13?

Jednoduše vyplňte níže uvedený kontaktní formulář. Naši specialisté na H13 se s vámi obratem spojí, proberou s vámi vaše požadavky a poskytnou vám personalizovanou cenovou nabídku.


Naše produkty